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Abstract: The bow wave generated by a ship hull that advances at constant speed in calm water is considered. The bow wave only 
depends on the shape of the ship bow (not on the hull geometry aft of the bow wave). This basic property makes it possible to de- 
termine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters. Fast ships with 
fine bows generate overturning bow waves that consist of detached thin sheets of water, which are mostly steady until they hit the 
main free surface and undergo turbulent breaking up and diffusion. However, slow ships with blunt bows create highly unsteady and 
turbulent breaking bow waves. These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation 
at the free surface. Recent results about the overturning and breaking bow wave regimes, and the boundary that divides these two 
basic flow regimes, are reviewed. Questions and conjectures about the energy of breaking ship bow waves, and free-surface effects 
on flow circulation, are also noted. 
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Introduction 
The bow wave generated by a ship hull that ad- 

vances at constant speed in calm water is considered. 
While of much lesser practical importance than the 
drag (of primary importance for design), the sinkage 
and the trim experienced by a ship, the bow wave is a 
feature of the flow around a ship hull that is of parti- 
cular theoretical interest, and worth studying for seve- 
ral reasons. For one, a ship bow wave is a highly visi- 
ble feature of the flow around a ship hull. Indeed, ship 
bow waves have been widely studied, experimenta- 
lly[1-11] as well as numerically or theoretically[12-29]. 

Furthermore, an important fundamental property 
of a bow wave is that it only depends on the shape of 
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the ship bow, not the length of the ship or the hull 
geometry aft of the bow region. This notable feature, 
which follows from the fundamental property that ship 
waves do not propagate ahead of a ship, makes it po- 
ssible to perform systematic parametric studies and to 
determine the bow waves of a canonical family of ship 
bows. Indeed, a ship bow can be defined via a relati- 
vely small number of parameters (unlike the large 
number of parameters required to define the geometry 
of an entire ship hull surface). 

Finally, another main property of a ship bow 
wave is that it is affected by nonlinearities to a far 
greater extent than the waves aft of the bow wave. In- 
deed, ship waves, with the notable exception of bow 
waves, typically are only weakly influenced by nonli- 
near effects, and in fact can be well approximated as 
linear waves for most practical purposes. A direct con- 
sequence of strong nonlinear effects at a ship bow is 
that ship bow waves can be divided into two distinct 
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flow regimes. Specifically, fast ships with fine bows 
generate overturning bow waves that consist of deta- 
ched thin sheets of water, which are mostly steady 
until they hit the water and undergo turbulent breaking 
up and diffusion. However, slow ships with blunt 
bows create highly unsteady and turbulent breaking 
bow waves. The boundary between the steady overtu- 
rning bow wave regime and the unsteady turbulent 
breaking bow wave regime readily follows from an 
upper bound for the elevation of the free surface that 
is a direct consequence of the nonlinear Bernoulli re- 
lation for steady free surface flows. Ship bow waves 
therefore provide a rich test case for investigating the 
influence of flow nonlinearities associated with the 
boundary condition at the free surface, and for testing 
the capabilities of CFD methods. Breaking ship bow 
waves may also be interesting more broadly to investi- 
gate the energy contained in breaking waves. 

The article reviews recent results related to the 
overturning and breaking bow wave regimes, and the 
boundary that divides these two flow regimes. Que- 
stions and conjectures about the energy of breaking 
ship bow waves, and free-surface effects on flow cir- 
culation, are also noted. The article mostly focuses on 
analytical approximations, based on elementary consi- 
derations and experimental measurements or observa- 
tions. This emphasis is justified by the fact that analy- 
tical approximations are necessary to gain basic insi- 
ght into the complex nonlinear dynamics of ship bow 
waves, notably the existence of two alternative flow 
regimes and the prediction of the boundary between 
these flow regimes, and are useful for many practical 
purposes. 
 
 
1. A basic nonlinear constraint 

We then consider the bow wave created by a ship 
hull, with draft D , that steadily advances at speed sV  

along a straight path in calm water of effectively infi- 
nite depth and lateral extent. The flow around the ship 
hull is observed from a right handed moving system of 
orthogonal coordinates ( , , )X Y ZX  attached to the 

ship, and thus appears steady with flow velocity given 
by the sum of an apparent uniform current ( ,0,0)sV  

opposing the ship speed sV  and the (disturbance) flow 

velocity ( , , )U V WU  due to the ship. The X  axis is 

chosen along the path of the ship and points toward 
the ship stern. The Z  axis is vertical and points up- 
ward, with the mean (undisturbed) free surface taken 
as the plane = 0Z . We define the nondimensional 
coordinates x  and the draft-based Froude number Fr  
as 
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The elevation of the free surface is denoted E . Vis- 
cous and surface tension effects are ignored. For 
steady flows, the Bernoulli relation 
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therefore holds. Here P  is the flow pressure, atm.P  

is the atmospheric pressure, and   is the density of 

water. At the free surface, where =Z E  and atm.=P P , 

the Bernoulli relation becomes 
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This relation yields the (well-known) upper bound 
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for the free-surface elevation E  for steady free-sur- 
face flows. This upper bound is a direct and important 
consequence of the nonlinear Bernoulli relation. If the 
nonlinear terms in the Bernoulli relation are neglected, 
the upper bound (2) does not hold and the Bernoulli 
relation yields the (well-known) linearized approxima- 
tion 
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The highest free-surface elevation bZ  for a ship 

bow wave occurs at the crest of the bow wave. Thin- 
ship theory and experimental measurements show that 
the bow wave height bZ  is roughly proportional to the 

entrance angle   of the waterline at the ship stem. If 
we consider a family of ship bows with various water- 
line entrance angles  , we readily anticipate that the 
“steady-flow constraint” (2) is satisfied for values of 
  that are sufficiently small, but cannot be satisfied 
for large values of  . Thus, steady bow waves can be 
expected for fine ship bows. However, steady bow 
waves cannot exist for blunt ship bows. The nonlinear 
constraint (2) therefore implies two types of bow 
waves that correspond to two distinct flow regimes. 
Specifically, fast ships with fine bows generate over- 
turning bow waves that consist of detached thin sheets 
of water, which are mostly steady until they hit the 
water and undergo turbulent breaking up and diffusion. 
However, slow ships with blunt bows create highly 
unsteady and turbulent breaking bow waves. Further- 
more, the condition 
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determines the boundary between the “steady” overtu- 
rning bow wave regime and the unsteady turbulent 
breaking bow wave regime. Thus, the existence of two 
distinct bow wave regimes, and the boundary that di- 
vides these two alternative flow regimes, immediately 
follow from an elementary consideration of the 
Bernoulli relation. The steady overturning and brea- 
king bow wave regimes, and the related dividing 
boundary, are successively considered below. 

The linear approximation (3) allows waves of 
large amplitude and cannot predict the occurrence of 
wave-breaking. While this property implies important 
limitations of a linearized theory of free-surface flows, 
the fact that a linear theory can predict large waves 
without wavebreaking is actually quite useful for 
many practical applications. Furthermore, the excess 
wave energy radiated by the overly large waves that 
can be predicted by a linear theory approximately 
accounts for the energy that would be dissipated via 
wavebreaking within a nonlinear theory, as shown in 
Ref.[30]. For the practical numerical modeling of 
flows around ship hulls, linear theories are therefore 
advantageous, indeed are arguably much preferable to 
nonlinear theories, in many instances. However, a 
nonlinear theory is necessary to gain a realistic under- 
standing of ship bow waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Ship draft D  and speed sV , rise of water 0Z  at the ship 

stem, bow wave height bZ , distance bX  between the 

ship stem and the bow wave crest, and distance 0X  

between the ship stem and the crossing of the bow wave 
with the mean free-surface plane =Z 0 

 
 
2. Overturning bow waves 
 
2.1 Analytical bow wave profiles for fine ship bows 

with rake and flare 
As depicted in Fig.1, a bow wave profile (contact 

curve between a ship hull surface and the free surface) 
is largely determined by four basic features: the height 

bZ  of the bow wave (elevation of the bow wave crest 

above the mean free-surface plane =Z 0), the location 

bX  (measured from the ship stem =X 0) of the bow 

wave crest, the water height 0Z  at the ship stem =X  

0, and the length 0X  of the bow wave (specifically, 

0X  defines the location, measured from the ship stem, 

of the intersection of the bow wave profile with the 
mean free-surface plane =Z 0). 

The front face of a bow wave (bow wave front) is 
well approximated by a parabolic arc, as suggested in 
Ref.[25] and experimentally verified in Ref.[11]. The 
back face can also be (crudely) approximated by a para- 
bolic arc. Thus, the front and back faces of a bow wave 
can be approximated by the two parabolic arcs 
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Here   is used instead of z  to emphasize that the 

foregoing expressions define the wave profile =z  
( )x . Furthermore, sx  in (5a) corresponds to the in- 

tersection = sx x  of the bow wave profile with the 

ship stem line = tanx z  . The intersection sx  and 

the corresponding water elevation sz  are given by 
 

= tans sx z  , 0
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The relation for sz  is based on an approximation in 

which, within the short segment 0sx x  , the para- 

bolic arc (5a) is replaced by its tangent at =x 0. 
 
 
 
 
 
 
 
 
 
Fig.2 Four-parameter (draft D , rake angle  , and entrance 

angles 2  and 2  of top and bottom waterlines) 
family of ship bows with rake and flare 

 
Simple analytical approximations to the four 

basic flow features bZ , bX , 0Z  and 0X  are given in 

Refs.[23-25] for a (particularly simple) family of 
wedge-shaped ship bows defined by only two parame- 
ters (the waterline entrance angle 2  and the draft D ) 
and in Refs.[26,27] for the more general family of 
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ship bows depicted in Fig.2. This family of ship bows 
is defined by four parameters: the draft D , the rake 
angle  , and the hull entrance angles 2  and 2  at 

the top waterline (at the free surface = 0Z ) and at the 
bottom waterline (at the hull draft =Z D ), respecti- 
vely. The wedge-shaped bows considered in Refs.[23- 
25] correspond to the special case = 0  and =  . 

The analysis (based on dimensional analysis, ex- 
perimental measurements, elementary asymptotic con- 
siderations, and extensive applications of thin-ship 
theory) given in Refs.[23-27] yields the simple analy- 
tical relations 
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where   is related to the flare of the bow and is defi- 

ned in terms of the waterline angles   and   as 
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Fr  is the draft-based Froude number (1) and the fun- 

ction ( )sE Fr  is defined in Ref.[27]. 

The four functions ( , , )b Fr   , ( , , )b Fr   , 

0 ( , , )Fr    and 0 ( , , )Fr    are tabulated in Ref.[27] 

for six draft-based Froude numbers Fr  that corre- 
spond to /(1+ ) =Fr Fr 0.3, 0.4, …, 0.8, nine rake 

angles = 60o, 45o, …, –60o, and nine values of the 

hull flare parameter = 1, 0.75, …, –1. These ranges 

of Froude numbers, rake angles, and flare en- compass 
most cases of practical interest. In particular, the range 

0.3 /(1+ ) 0.8Fr Fr   corresponds to draft- based 

Froude numbers Fr  in the range 0.43 4Fr   
and–for a ship with length/draft ratio / = 20sL D –to 

length-based Froude numbers /L s sFr V gL  in the 

range 0.1 0.9LFr  . 

The relations (6) yield useful physical insight in- 
to main characteristics of ship bow waves. In particu- 
lar, we have 
 

0 = (1)
Z

O
D

, = ( )bZ
O Fr

D
, = ( )bX

O Fr
D

,  

20 = ( )
X

O Fr
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in the high-speed limit Fr  . Here, (1) was used. 

Expressions (5) and (6) provide simple analytical 
approximations to the bow wave profiles of a relati- 
vely broad class of fine ship bows with rake and flare. 
The effect of a bulb can be approximately taken into 
account by adding the wave profile due to a point 
source. 
 
2.2 Experimental and CFD validation 

The simple analytical approximations (6) to the 
four basic features bZ , bX , 0Z  and 0X  that largely 

characterize a ship bow wave profile are compared to 
experimental measurements for wedge-shaped ship 
bows with various entrance angles 2 , and also for a 
rectangular flat plate towed at several yaw (incidence) 
angles  , in Refs.[23-25]. The wedge-shaped bows 
correspond to the special case = 0  and =   of 

the ship bows depicted in Fig.2. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Normalized bow wave height 

2( / )cos / tanb sZ g V    for 

ten hull forms (top), and a rectangular flat plate towed at 
three yaw angles  , several speeds sV  and heel angles 

  (bottom). The straight solid line is the approximation 

2.2 /(1+ )Fr  given by (7), and the dashed curve corr- 

esponds to Ogilvie’s high-Froude-number approximation 
 

In particular, expression (6a) for the bow wave 
height bZ  yields 
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for wedge-shaped bows. The analytical approximation 
(7) is compared to experimental measurements in 
Fig.3 for wedge-shaped ship bows with various entra- 
nce angles 2  (top) and for a rectangular flat plate 
towed at several yaw angles   (bottom). The high 
Froude number approximation proposed by Ogilvie[31] 
is also shown in Fig.3. 

Detailed comparisons of analytical predictions 
and experimental measurements of bX , 0Z  and 0X  

for both wedge-shaped ship bows with various entra- 
nce angles and a rectangular flat plate at several yaw 
angles are also given in Refs.[23-25]. Furthermore, 
comparisons of experimental wave profiles with the 
analytical wave profiles predicted by (5) and (6) are 
given in Ref.[25] for wedge-shaped ship bows 
(Wigley hull and three sharp-ended strut-like hulls) 
with various entrance angles as well as a rectangular 
flat plate at several yaw angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Analytical wave profile given by (5) and (6) and wave 

profiles obtained from thin-ship theory and two CFD 
flow solvers (ISIS-CFD and FEFLO), used in Euler-flow 
mode, for the ship bow shown in Fig.2 with = 30o and 

= =  15o, at two draft-based Froude numbers =Fr  
0.67 and 2.23. The stem line of the ship is marked in the 
figure 

 
For the more general family of ship bows depi- 

cted in Fig.2, the analytical bow wave profile given by 

the two parabolic arcs (5) and the relations (6) is 
shown in Ref.[27] to be in good overall agreement 
with CFD bow wave profiles obtained via Euler-flow 
calculation methods. This result is illustrated in Fig.4 
where the analytical wave profile given by (5) and (6) 
is compared to wave profiles obtained from two CFD 
flow solvers (ISIS-CFD and FEFLO) used in Euler- 
flow mode, as well as thin-ship theory, for the ship 
bow shown in Fig.2 with = 30o and = =  15o, 

at two draft-based Froude numbers =Fr 0.67 and 
2.23. 

The Euler profiles in Fig.4 are appreciably closer 
to the parabolic bow-wave profiles (5) than to the 
wave profiles given by thin-ship theory, which is used 
in Refs.[26,27] to extend the relations obtained (using 
elementary theoretical considerations, notably dimen- 
sional analysis, and experimental measurements) in 
Refs.[23-25] for wedge-shaped bows (without rake or 
flare) to the more general family of ship bows depi- 
cted in Fig.2. 

Thus, the simple analytical relations (5) and (6), 
with the tables for the functions b , b , 0 , 0  given 

in Ref.[27], provide a practical analytical approxima- 
tion to the bow wave profile for 0sx x x  . This 

simple approximation may be useful for a relatively 
broad class of fine bows with rake and flare, common 
for fast ships that generate overturning bow waves. 
 
2.3 Free-surface effects at the leading edge of a plate 

An interesting result of the experimental observa- 
tions and measurements reported in Ref.[25] is that a 
rectangular flat plate towed at a yaw angle   creates 
a bow wave that does not differ appreciably from the 
bow wave generated by a wedge-shaped bow with en- 
trance angle 2 . This notable property is illustrated 
in Fig.3, where the bow wave height bZ  is depicted 

for a wedge (top) and for a flat plate (bottom). 
The close similarity of 3-D flows about a wedge 

or the related inclined vertical flat plate (one side of 
the wedge) in the presence of a free surface is mar- 
kedly different from the corresponding case of unbou- 
nded 2-D flows (i.e., without a free surface) about a 
wedge (with entrance angle 2 ) advancing straight 
ahead at constant speed or about the flat plate (at an 
incidence angle  ) that is obtained when one side of 
the wedge is removed. 

A possible explanation for this difference is that 
no flow circulation is generated around the leading 
edge of a flat plate piercing a free surface because the 
pressure at the free surface is constant (equal to the at- 
mospheric pressure). Thus, the presence of a free sur- 
face may have a large influence on flow circulation. 
Further experimental and CFD investigations of free- 
surface effects on flow circulation may then be intere- 
sting. 
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2.4 Elementary theory of overturning bow waves 
Overturning ship bow waves cannot be predicted 

using traditional methods, notably thin-ship theory 
and potential-flow panel methods, for computing 
flows around ship hulls. However, divergent overtu- 
rning bow waves can be predicted and evaluated using 
the 2 - D + t  theory as well as numerical (CFD) 
methods[12-22]. Although modern CFD methods can be 
used to compute overturning detached ship bow waves, 
as is indeed illustrated further on, such numerical cal- 
culations are not well suited for performing the syste- 
matic parametric studies that are required to analyze 
the influence of a ship’s speed and draft, and of the 
shape of a ship bow. CFD methods likewise are not 
well suited for routine practical applications to design, 
notably at early stages when numerous alternative de- 
signs typically need to be considered. 

The elementary theory of overturning ship bow 
waves expounded in Ref.[29] provides a compleme- 
ntary alternative approach to CFD. The fully-analyti- 
cal, albeit highly-simplified, theory expounded in 
Ref.[29] yields direct “cause-and-effect” relationships 
between–on the “cause” side–the ship speed sV  and 

the bow geometry (draft D , entrance angles   and 
  at the top and bottom waterlines, rake angle   

and related flare) and–on the “effect” side–main geo- 
metrical characteristics (size, shape, thickness) of the 
resulting detached overturning bow wave and the 
width of the related wave breaking wake. The theory 
also provides basic physical insight that is not readily 
provided by the detailed experimental measurements 
or CFD calculations reported in the literature on ship 
bow waves[2,3,20,22], into the relatively complex dyna- 
mics of overturning ship bow waves. 

The theory ignores effects of viscosity and sur- 
face tension. Although this basic approximation grea- 
tly simplifies the flow analysis, the inviscid-flow ana- 
lysis of an overturning ship bow wave remains extre- 
mely complex, notably due to strong nonlinearities in 
the free-surface boundary condition. Additional app- 
roximations are therefore made in the elementary 
theory considered in Ref.[29], although it accounts for 
nonlinearities as required to model overturning ship 
bow waves. The theory consists of four main steps. 

The first step is the contact curve, commonly 
called bow wave profile, between the ship hull and the 
free surface. For the relatively broad class of fine ship 
bows with rake and flare depicted in Fig.2, this first 
step can be taken as the analytical approximation to 
the bow wave profile given by (5) and (6). 

In the second step, the flow velocity at the bow 
wave profile is determined from the bow wave 
profile–via simple analytical relations–by means of 
the exact (for an inviscid flow) boundary conditions at 
the ship hull surface and the free surface, this second 
step is given in Refs.[32,29]. 

The third step, expounded in Ref.[29], determi- 
nes the overturning detached bow wave and the 
wave’s size, shape, and intersection with the mean 
free surface. This step is an elementary Lagrangian 
analysis, based on Newton’s equations, that ignores 
interactions among water particles within the overtu- 
rning detached bow wave. 

The (unpublished) fourth step determines the 
thickness of the overturning ship bow wave (thin sheet 
of water) via elementary considerations related to 
mass conservation, specifically by relating the volume 
of water that flows through an overturning bow wave 
to the water displaced by the advancing ship hull. 

These four steps fully determine the size, shape 
and thickness of an overturning bow wave and the 
width of the related wavebreaking wake in terms of 
the ship speed and the bow geometry (draft and shape) 
for the relatively broad class of fine ship bows depi- 
cted in Fig.2. The qualitative comparisons with expe- 
rimental observations and CFD calculations reported 
in Ref.[29] show that while the elementary analysis 
underlying the theory cannot be expected to yield 
accurate predictions, the theory predicts trends corre- 
ctly and provides useful estimates of the influence of 
main ship design parameters (speed, draft, bow shape), 
for which systematic experimental measurements or 
CFD computations are not available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Simulated by the RANS solver FOAM-SJTU[34] (a) or the 

SPH method[35] (b) 
 
2.5 CFD simulations of overturning bow waves 

The results summarized in the foregoing, and in- 
deed throughout most of this article, largely consider 
analytical approximations, based on elementary consi- 
derations and experimental measurements or observa- 
tions. As already noted, this focus is justified by the 
fact that analytical approximations are useful for pra- 
ctical applications, and indeed are necessary to gain 
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basic insight into the complex nonlinear dynamics of 
ship bow waves, notably the occurrence of two flow 
regimes and the approximate prediction of the related 
dividing boundary. 

However, ship bow waves can also be computed 
using CFD methods, as illustrated in Refs.[22,29,33- 
35]. Two recent examples of numerical simulations of 
overturning ship bow waves, reported in Refs.[34] and 
[35] are shown in Fig.5. The numerical simulations 
depicted in the upper part of the figure are obtained 
using the RANS solver naoe-FOAM-SJTU[36-38]. The 
lower part of Fig.5 shows numerical simulations given 
by a meshless-based Lagrangian particle method[39-41]. 

The numerical simulations depicted in Fig.5 and 
elsewhere[22,29,33], are in qualitative agreement with 
flow observations, e.g., with the pictures shown in 
Ref.[25], as well as the elementary analytical theory 
expounded in Ref.[29]. Quantitative comparisons 
between detailed experimental measurements and 
numerical or theoretical predictions of the size, shape 
and thickness of an overturning bow wave, and of the 
width of the related wave breaking wake, clearly are 
needed to better ascertain the merits and the limita- 
tions of CFD methods and the elementary analytical 
theory given in Ref.[29]. 
 
 
3. Boundary between overturning and breaking 

bow waves 
 
3.1 Theoretical boundary between two types of bow 

waves 
Expression (6a) for the bow wave amplitude bz  

and the upper bound 1/ 2bz   for steady free-surface 

flows show that steady overturning ship bow waves can 
only exist if 
 

tan + tan
+1 4.4
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

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In the special case of wedge-shaped bows, this condi- 
tion becomes 
 

tan
+1 4.4

cos
Fr




  

 

These conditions are satisfied for fast ships with fine 
bows, but not for slow ships with blunt bows. 
 
3.2 Experimental validation 

For wedge-shaped ship bows, the boundary 
between the steady overturning bow wave regime and 
the unsteady breaking bow wave regime is then given 
by 
 

tan
+1 4.4

cos
Fr




                           (8) 

Experimental validation of this simple analytical app- 
roximation for the boundary between the two basic 
bow wave regimes is considered in Refs.[25] and [28]. 

Specifically, Ref.[28] considers the bow waves 
due to a rectangular flat plate, of length 0.782 m and 
height 0.5 m, immersed at a draft = 0.2 mD  and held 

at a 10o heel angle (angle between the plate and the 
vertical axis). The flat plate is towed at a constant 
speed = 1.75 m / ssV  (draft-based Froude number 

1.25Fr  ). Nine yaw angles = 10o, 15o, 20o, 25o, 
30o, 45o, 60o, 75o and 90o are considered. The yaw 
angles 10o   20o and 30o   90o correspond to 
the overturning and unsteady bow wave regimes, re- 
spectively. The angle = 25o lies on the boundary 
separating these two flow regimes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Instantaneous bow wave profiles (determined from pho- 

tographs) due to a rectangular flat plate, immersed at a 
draft = 0.2 mD , towed at constant speed =sV     

1.75 m/s in calm water, and held at a heel angle 10o and 
two yaw angles = 15o or 60o, which correspond to the 
overturning and unsteady bow wave regimes, respecti- 
vely 

 
For each of the nine yaw angles  , computer- 

driven color photographs (eight for 10o   45o, ten 
for = 75o and 90o, eleven for = 60o) of the bow 
wave are taken. Figure 6 shows the resulting series of 
(photographed) instantaneous bow wave profiles for 
two yaw angles = 15o (a) or 60o (b). As already 
noted, these two yaw angles correspond to the overtu- 
rning or breaking bow wave regimes, respectively, 
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according to the theoretical relation (8). There is little 
variation among the bow wave profiles in the top of 
Fig.6, i.e., for the yaw angle = 15o. However, 
considerably more variation can be observed among 
the bow wave profiles for = 60o, in the bottom of 
Fig.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Averages of the variations max minZ Z  (top) and z  

(bottom) for = 10o, 15o, 20o and for = 30o, 45o, 60o, 
75o, 90o. These averages correspond to the overturning 
and unsteady bow wave regimes, respectively, and are 
marked “overturning” and “unsteady” in the figure. The 
third curve, marked “boundary”, corresponds to = 25o, 
which lies on the boundary (8) between the overturning 
and unsteady wave regimes 

 
Two alternative quantitative measures of the va- 

riations among the bow wave profiles shown in Fig.6 
are considered in Fig.7. Specifically, the (top) and 
(bottom) of Fig.7 show averages of the largest varia- 
tions max minZ Z  (top) or of the root-mean-square 

variations z  (bottom), respectively, among bow 

wave heights at nine values =X 0.05 m, 0.1 m,  
0.15 m, 0.2 m, 0.25 m, 0.3 m, 0.4 m, 0.5 m and 0.6 m 
of the distance from the leading edge of the plate. Two 
curves in Fig.7 correspond to averages for = 10o, 
15o, 20o on one hand, and for = 30o, 45o, 60o, 75o, 
90o on the other hand. The resulting average values of 

max minZ Z  and z  are marked “overturning” and 

“unsteady” in Fig.7. The line marked “boundary” in 
Fig.7 corresponds to = 25o, which lies on the boun- 
dary (8) between the overturning and unsteady wave 

regimes. 
Figure 7 shows that the largest variation maxZ   

minZ  and the rms variation z  are significantly larger 

for 30o   90o than for 10o   20o. Thus, Fig.7 
shows that bow waves for 30o   90o exhibit a sig- 
nificantly higher degree of unsteadiness than bow 
waves for 10o   20o, especially near the leading 
edge of the plate, which corresponds to small values 
of X  in Fig.7. 

A more detailed study of the difference in flow 
unsteadiness between the “steady” overturning bow 
wave regime and the breaking wave regime is given in 
Ref.[28]. Further experimental illustrations of the 
change flow regime that occurs at the boundary (8) are 
given in Ref.[25] where several photographs of bow 
waves generated by a flat plate are shown. The transi- 
tion between the two bow wave regimes is also well 
illustrated in three videos that can be viewed at 
http://www.scs.gmu.edu/?rlohner/pages/pics/freesurf.
html. 
 
 
4.Breaking bow waves 
 

4.1 Height of breaking bow waves 
The height bZ  of a (highly unsteady, turbulent) 

breaking ship bow wave, that is generated by a “slow” 
ship with a “blunt” bow as already noted, is now con- 
sidered. The (top) and (bottom) of Fig.8 depict the 

normalized bow wave heights 2/b sZ g V  and (1  
2) /b sFr Z g V , respectively, as functions of the water- 

line half entrance angle  , or for a flat plate the yaw 
angle  . Figure 8 shows a relatively large number of 
experimental measurements (for eleven hulls and a 
flat plate towed at nine yaw angles). The experimental 
data are divided into two groups, identified by ○ or +, 
which correspond to values of   and Fr  in the un- 
steady (breaking) or steady (overturning) bow wave 
regimes. This division into steady and unsteady data is 
not based on flow observations, but is determined by 
the values of   and Fr  with respect to the theoreti- 
cal boundary (8). 

Figure 8(a) shows that the steady-flow data (+) 

lie below the horizontal line 2/ = 1/ 2b sZ g V , in 

agreement with the Bernoulli constraint 
2/ 1/b sZ g V   

2 for steady free-surface flows. Figure 8(a) also shows 
that the unsteady-flow data (○) are distributed, more 

or less evenly, around the horizontal line 2/ =b sZ g V  

1/2. Thus, the height bZ  of an unsteady ship bow 

wave is given by 
 

2

1

2
b

b
s

Z g
z

V
                               (9) 
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in accordance with the constraint imposed by the 
Bernoulli relation for steady free-surface flows. 

Figure 8(b) shows that the steady-flow data (+) 
are distributed, fairly evenly, around the curve 
2.2 tan / cos  , in agreement with the approximation 
(7) and Fig.3. Figure 8(b) also shows that the un- 
steady-flow data (○) are located below the curve 
2.2 tan / cos  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Bow wave heights 

2/b sZ g V  (top) and 
2(1+ ) /b sFr Z g V  

(bottom) as functions of the waterline half entrance angle 
  or the yaw angle   for a flat plate. The experimental 
measurements identified by ○ or + correspond to values 
of   and Fr  within the unsteady or steady bow wave 
regimes 

 
Thus, expressions (7) and (9) provide reasonable 

approximations to the height bZ  of a ship bow wave 

in the overturning and unsteady flow regimes. These 
expressions also provide upper bounds for bZ  in the 

unsteady and overturning regimes, respectively. In- 
deed, the height bZ  of the bow wave of a ship with a 

wedge-shaped bow is given by 
 

2

2.2 tan
min

1+

1
,

c s 2o
b

b
s

Z g
z

FrV




    
 

            (10) 

 
Figure 8 shows that this simple expression agrees 

relatively well with experimental measurements for 
hulls with wedge-shaped bows as well as a flat plate. 
Expression (10) directly defines the height bZ  of a 

ship bow wave, that may be overturning or unsteady, 
in terms of the ship speed sV , draft D , and waterline 

entrance angle 2 . 
 

4.2 Energy of breaking bow waves 
A nonbreaking plane progressive wave is fully 

defined by a relatively small number of parameters: 
the angle   that determines the direction of propaga- 
tion of the wave, the wave length   or the related 
wave number 2 /k   , the wave period T  or the re- 
lated wave frequency 2 /T   , the water depth H , 
and the wave amplitude A . Furthermore, the wave- 
number k , the wave frequency  , the water depth H  
and the wave amplitude A  are related via a disper- 
sion relation, where the wave amplitude has no signi- 
ficant influence if A  is small enough. E.g., the disper- 

sion relation is 2= /k g  for the simplest case of 

small waves in deep water. 
The energy transported by a nonbreaking plane 

progressive wave is determined in terms of the wave 

amplitude as 2 / 2gA  in deep water. However, the 

situation is quite different and considerably more 
complex for breaking waves, including breaking ship 
bow waves of interest here, because the wave amp- 
litude is no longer a meaningful parameter as noted 
earlier. Thus, the energy of a breaking ship bow wave, 
and more generally of other types of breaking water 
waves, cannot be determined in terms of the wave 
amplitude A  as for the much simpler case of nonbrea- 
king plane progressive waves. Indeed, the determina- 
tion of the energy of a breaking wave is a nontrivial 
fundamental issue. 

A reasonable conjecture is that this energy can be 
related to the volume   of the breaking wave, instead 
of its amplitude A . Indeed, elementary considerations 
suggest that the kinetic energy and the potential 
energy of a breaking ship bow wave may be assumed 

proportional to 2
sV . The energy of a breaking bow 

wave can be related to the drag experienced by a ship 
bow. This relationship may then provide useful infor- 
mation about the energy of breaking ship bow waves. 
Detailed experimental measurements, as well as 
numerical computations, of breaking ship bow waves 
would be very useful, and indeed are necessary to gain 
a realistic understanding of this important but complex 
flow regime. 
 
 
5. Conclusions 

In summary, several practical results about the 
bow wave generated by a ship hull that advances at 
constant speed in calm water have been reviewed. 
These results–based on simple considerations, notably 
dimensional analysis, experimental measurements, 
elementary asymptotic considerations, and extensive 
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applications of thin-ship theory–include simple analy- 
tical relations that approximately determine bow wave 
profiles for the relatively broad class of fine bows 
with rake and flare depicted in Fig.2. The effect of a 
bulb can be approximately taken into account by 
adding the wave profile due to a point source. 

A fundamental constraint (upper bound for the 
free-surface elevation), that stems from the nonlinear 
Bernoulli relation for steady free-surface flows, im- 
plies the existence of two basic alternative bow wave 
regimes. Specifically, fast ships with fine bows ge- 
nerate overturning bow waves that consist of detached 
thin sheets of water, which are mostly steady until 
they hit the main free surface and undergo turbulent 
breaking up and diffusion. However, slow ships with 
blunt bows create highly unsteady and turbulent brea- 
king bow waves. The boundary that separates these 
two flow regimes readily follows from the constraint 
associated with the Bernoulli relation. For the family 
of ship bows shown in Fig.2, the boundary between 
the “steady overturning” and “unsteady breaking” 
regimes is given by a simple analytical relation. 

The simple analytical relations for bow wave 
profiles, and the boundary that separates the overtu- 
rning and breaking bow wave regimes, summarized 
here agree well with experimental observations and 
measurements for wedge-shaped ship bows with 
various entrance angles as well as a flat plate towed at 
various yaw angles. The analytical bow wave profiles 
are also in fair agreement with CFD computations for 
the fine ship bows with rake and flare depicted in 
Fig.2. 

The reviewed results also include an elementary 
fully-analytical, albeit highly-simplified, theory that 
determines the size, shape and thickness of an overtu- 
rning bow wave, and the width of the related wave 
breaking wake, in terms of the ship speed and the bow 
geometry (draft and shape) for the class of ship bows 
shown in Fig.2. Qualitative comparisons with experi- 
mental observations and CFD calculations show that 
while this elementary theory cannot be expected to be 
accurate, it predicts trends correctly and provides use- 
ful estimates of the influence of main ship design pa- 
rameters (speed, draft, bow shape). 

Ship bow waves offer a rich test case for investi- 
gating the influence of flow nonlinearities associated 
with the boundary condition at the free surface, and 
for testing the capabilities of CFD methods. Breaking 
ship bow waves created by slow ships with blunt bows 
may also provide useful insight into the basic issue of 
determining the energy contained in a breaking wave, 
which cannot be readily evaluated in terms of the 
wave amplitude as for the much simpler case of a non- 
breaking plane progressive wave. A reasonable conje- 
cture is that the energy of a breaking bow wave can be 
related to the volume   of the breaking wave, instead 

of its amplitude A , and may be assumed proportional 

to 2
sV . 

Ship bow waves also illustrate the basic difficu- 
lties inherent to the nonlinear modeling of free-surface 
flows around ship hulls. Indeed, although a linearized 
theory of free-surface flows has important limitations 
(including the inability to predict wavebreaking), it 
allows large waves without the occurrence of wave- 
breaking. This feature in fact is very useful for many 
practical cases. Furthermore, the excess wave energy 
radiated by the overly large waves predicted by a 
linear theory approximately corresponds to the energy 
that would be dissipated via wavebreaking within a 
nonlinear theory. In many instances, a linear theory is 
then advantageous, indeed much preferable to a nonli- 
near theory, for the practical numerical modeling of 
flows around ship hulls. 
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